

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058.

Re-Exam December 2019

Max. Marks: 100 Class: SYBTech

Semester: IV

Name of the Course: Signals and Systems

Duration: 3 Hr.
Program: Electrical

Course Code | BTE 230

Instructions:

- Attempt any FIVE question
- Answers to all sub questions should be grouped together
- Figures to the right indicate full marks
- In the absence of any data, make suitable assumptions and justify the same.

Q. No		Max Marks
Qla	Classify system $y[n] = x[n+12]$ as static/dynamic, linear/non-linear, time-variant/invariant, causal/non-causal and stable/unstable.	05
b	Find Z- Transform of $x(n) = n u(n)$.	05
С	Determine odd and even parts of signal $x[n] = \{4, 1, -1, 2, 1, -1, 5\}.$	05
d	Given DT signal $x(t)=u(t)$, plot $x(t+1)+x(t-1)$.	05
Q2a	Find the exponential Fourier Series and plot the magnitude and phase spectrum of the signal x(t) shown in figure below.	10
b	Consider a LTI system with frequency response $H(j\omega) = \frac{j\omega + 1}{(j\omega + 5)(j\omega + 7)}$. Determine its impulse response. For a given input x (t) = e^{-4t} u (t) evaluate y (t).	10
Q3a	Find the inverse Laplace Transform of $X(s) = \frac{(2s+1)}{(s+4)(s+9)}$ if the convergence regions are i) $s > -4$ ii) $s < -9$ iii) $-9 < s < -4$.	10

ь	In an electrical network the relation between input voltage $x(t)$ and output voltage $y(t)$ is given by $4\ddot{y}(t) + 5\dot{y}(t) + y(t) = x(t)$ where $x(t) = 5u(t)$. Determine the output voltage $y(t)$ if initial conditions in the network are $y(0) = -1$ and $\dot{y}(0) = 1$.	10
Q4a	Consider a system described by the difference equation $y[n] = 2 y[n-1] + 10 x[n]$. Find the response of the system to the input $x(n) = (0.4)^n u(n)$. Initial conditions in the system are $y(-1) = 1$.	[()
b	Calculate the value of $e^t u(t)^* e^{-2t} u(t)$ using continuous time linear convolution.	1()
Q5a	Determine $x[n]$ if $X(z) = \frac{z-5}{(z-2)(z-3)(z-1)}$.	10
b	State and prove time scaling and time shifting property of Z-Transform.	()5
С	Determine Z – Transform of $sin(\omega_0 n) u n $	05
Q6a	Obtain Direct form I and Direct form II realization of a system with transfer function $H(z) = \frac{2z^2 + 12z + 10}{z^2 + 2z - 5}$.	1()
b	Test if the signal $x[n] = (\frac{1}{4})^n u[n]$ is an energy or a power signal?	()-1
С	Determine linear convolution of following sequence. $X[n] = \{-3,1,4,0,-2,1\}$ and $h[n] = \{5,-2,3,0,1,-3\}$.	()()

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058.

Re-Exam December 2019

Max. Marks: 100 Class: SYBTech

Semester: IV

Name of the Course: Signals and Systems

Duration: 3 Hr. Program: Electrical

Course Code: BTE230/

Instructions:

- Attempt any FIVE question
- Answers to all sub questions should be grouped together
- Figures to the right indicate full marks
- In the absence of any data, make suitable assumptions and justify the same.

Q. No		Max. Marks
Qla	Classify system $y[n] = x[n+12]$ as static/dynamic, linear/non-linear, time-variant/invariant, causal/non-causal and stable/unstable.	05
b	Find Z- Transform of $x(n)=n$ $u(n)$.	05
С	Determine odd and even parts of signal $x[n] = \{4, 1, -1, 2, 1, -1, 5\}.$	05
d	Given DT signal $x(t)=u(t)$, plot $x(t+1)+x(t-1)$.	05
Q2a	Find the exponential Fourier Series and plot the magnitude and phase spectrum of the signal x(t) shown in figure below.	10
b	Consider a LTI system with frequency response $H(j\omega) = \frac{j\omega + 1}{(j\omega + 5)(j\omega + 7)}$. Determine its impulse response. For a given input x (t) = e^{-4t} u (t) evaluate y (t).	10
Q3a	Find the inverse Laplace Transform of $X(s) = \frac{(2s+1)}{(s+4)(s+9)}$ if the convergence regions are i) $s > -4$ ii) $s < -9$ iii) $-9 < s < -4$.	10

In an electrical network the relation between input voltage $x(t)$ and output voltage is given by $4\ddot{y}(t) + 5\dot{y}(t) + y(t) = x(t)$ where $x(t) = 5u(t)$. Determine the ou voltage $y(t)$ if initial conditions in the network are $y(0) = -1$ and $\dot{y}(0) = 1$.		
Q4a	Consider a system described by the difference equation $y[n] = 2 y[n-1] + 10 x[n]$. Find the response of the system to the input $x(n) = (0.4)^n u(n)$. Initial conditions in the system are $y(-1) = 1$.	10
b	Calculate the value of e ^t u(t)* e ^{-2t} u(t) using continuous time linear convolution.	10
Q5a	Determine $x[n]$ if $X(z) = \frac{z-5}{(z-2)(z-3)(z-1)}$.	10
b	State and prove time scaling and time shifting property of Z-Transform.	05
С	Determine Z – Transform of $sin(\omega_0 n)$ u[n]	05
Q6a	Obtain Direct form I and Direct form II realization of a system with transfer function $H(z) = \frac{2z^2 + 12z + 10}{z^2 + 2z - 5}$.	10
b	Test if the signal $x[n] = (\frac{1}{4})^n$ $u[n]$ is an energy or a power signal?	04
С	Determine linear convolution of following sequence. $X[n] = \{-3,1,4,0,-2,1\}$ and $h[n] = \{5,-2,3,0,1,-3\}$.	06

Bharatiya Vidya Bhavan's Sardar Patel College of Engineering (A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058.

Duration:3 hours

Semester: IV

Max points: 100 marks

Re-exam(Dec 2019)

Program: : Electrical Engineering

Course Code : PC-BTE404

Name of the Course: Microprocessors and Microcontrollers

Note: Instructions:

• Answer any **five** questions.

• Assume suitable data if required.

• Answers to all sub-questions should be grouped together

Q. No		Ma rks	C	BL	PI
1a	Explain the addressing modes of 8051 microcontroller with examples.	10	1	2	1.3.1
b.	Write a program to generate a staircase waveform using DAC in 8051 microcontroller.	10	2	3	
2a	Explain any Six bit manipulation instructions of 8051 controllers.	6	1	2	1.3.1
b.	Explain timer modes 1 and 2 of 8051 microcontroller with assembly language program.	12	1,	3	
3a.	Explain the difference between i)Conditional and unconditional branch instruction ii)CALL and JUMP instructions iii) subtract and compare instructions iv)PUSH and POP v)MOV and MOVX instructions. With an example.	10	1	2,4	1.3.1
b.	Explain SPI and I2C.	10	1	2	
4a.	Describe the internal architecture of 8051 microcontroller with neat diagram.	10	1	2	1.3.1
b.	Write short notes on serial communication in microcontrollers and special function registers used for serial communication	10	1,	3	
5a.	Write an ALP to sort an array of data in descending order.	10	1	3	1.3.1
b.	Explain matrix keyboard interfacing of 8051 microcontroller with neat diagram .with an ALP.	10	1, 2	2,3	